Basic Beekeeping Course 


    The Basic or Beginning Beekeeping Course is designed to familiarize you with the BASICS needed to advance to higher education as far as beekeeping goes.  Of course it is not intended to be all inclusive nor all encompassing.  Beekeeping is for many a hobby, art or perhaps a profession with many different facets. Our intent is to help you on your way to a good beginning with your new hobby.

[This information can be downloaded from this link.]

Let’s begin with the very basics.  The Apis Mellifera or honey bee. The bee that most everyone is familiar with and is seen on plants pollinating or collecting nectar.  Of this genus there are several (24) different races of bees.  That may sound like a lot of bees, but we will be discussing the basic bee most everyone uses–the Italian honey bee (A. mellifera ligustica). It was introduced to the United States around 1859.

Chapter 1

A lesson on races of bees:

Italian   (Apis mellifera linguistica) Probably the most widely used bee in the United States.  It varies in color from blonde to a rustic brown.  One will normally see the term three banded Italians.  That is because you will see the bands (rings of darkness) on the abdomen.  The Italian honey bee builds large populations of bees, use a lot of nectar and pollen to feed this large population, produce honey crops in some areas of 200 pounds per hive, and over-winters well in large clusters.  Most are gentle and easy to work.

Carnolian   (Apis mellifera carnica) This is a dark bee.  In fact the queen are very hard to find in a hive unless they are marked.  They thrive in cooler climates.  Although they go into winter cluster with smaller populations than the Italian, they use up less food and build up fast in the spring of the year when nectar and pollen become available.  Pure Carnolians are very gentle bees and are recommended to the hobbyist who is just beginning “the beekeeping experience.”  They do demonstrate a tendency to swarm.  Cross-bred Carnolian bees  seem to be a bit aggressive.

Caucasian  (Apis mellifera caucasica) This a gray bee.  It comes from a region of the Caucasus Mountains in Europe.  Pure Caucasians are gentle and prolific.  They winter well and do not swarm excessively.  The chief criticism is that they tend to build burr comb between frames and gather and use large amounts of propolis.

German Black  (Apis mellifera mellifera) Originally from throughout northern Europe, this was the first honey bee brought to the New World. They are brown/black in color and winter well. German black bees are nervous, aggressive and build up slowly in spring.

Africanized Honey bee (Apis mellifera scutellata) and its hybrids – These honey bees originated throughout east Africa. In the 1950s, this race was imported to Brazil and began migrating northward. Compared to European races, this bee and its hybrids are extremely defensive, have smaller nests, the queen emerges earlier and swarm more frequently.

Other names will pop out at you from the various ads.  These will include: Starline, Midnite, Double Hybrid, Russian, Buckfast, New World Carnolian, Red Head, Karnica, Aurea,  Minnesota Hygienic Italians, Russian, etc.  These bees are still lines developed from the above races of bees.

As a new beekeeper experiment with different races or lines of bees.  This is to find which breed works best for you in your area or particular requirement. It is almost like comparing a Chevrolet and a Ford.  They both get you to where you want to go most of the time.

Chapter 2

The caste system of bees.

Workers – Reproductively underdeveloped females that do all the work of the colony. A colony may have 2,000 to 60,000 workers.
The workers tend the queen and young drones as well as the young brood. All bees develop through a complete metamorphosis: after three days, the egg hatches into a worm-like larva which feeds voraciously and grows and molts each day for about four days. It then goes into a resting stage, the pupa, which lasts for another few days in a capped cell until the bee emerges as an adult. This process takes 16-24 days depending on season and class of bee. As mentioned previously, workers feed the young larvae and seal the pupa into the cell. They also feed the emerged young adults until they are old enough to fend for themselves. The young worker tends larvae (nurse bee) and uses its wings to help ventilate the hive. As it gathers strength, it will start cleaning out old used cells for reuse, may tend the queen (attendants) or young drones, or work on capping cells. Depending on the season, and after a few days have passed, the worker works at gathering operations. The bee will fly out of the hive and visit flowers in search of nectar and pollen (field bee), or will visit trees for harvesting resin to make propolis. The propolis is used as glue and caulk to seal cracks in the hive. The nectar and pollen are collected and returned to the hive for use and/or storage.

Drones – Male bees. A colony may have 0 to 500 drones during spring and summer.
Drones fly from the hive and mate in the air with queens from other colonies. Drones are tolerated in the hive only when there is a possibility that they may mate with a queen. Thus a few are tolerated in spring and fall, more in the summer, but none in the winter. The workers keep the drones out of the hive to starve to death in the autumn. Drones, like queens, lack the body parts to effectively harvest nectar or pollen to feed themselves. Drones also lack a stinger of any kind. They are designed for mating only.

Queen – A fully fertile female specialized for producing eggs.
When a queen dies or is lost, workers select a few young worker larvae and feed them a special food called “royal jelly.” These special larvae develop into queens. Therefore, the only difference between workers and queens is the quality of the larval diet. There is usually only one queen per colony. The queen also affects the colony by producing chemicals called “pheromones” that regulate the behavior of other bees.

Chapter 3


Life Stages of a Bee.
Under normal circumstances the queen lays all the eggs in the hive.  There are four stages of embryo development–egg, larva, pupa, and adult.  This kind of development is called complete metamorphosis.  Workers and queens develop from fertilized eggs and drones from non-fertilized eggs.  The egg is incubated in the nursery region called a brood nest at a temperature of approximately 91°– 97° F. Once hatched, the larva is fed between 150-800 times a day. and gains about 900 times the weight of the egg by the fifth day. They are mass-fed brood food called worker-jelly and gradually changed over to pollen and honey.  The other larva that are continued to be fed only “royal-jelly” develop into queens. Now the cells are capped over and develop into what their genetic traits and food sources allow them to become. As she emerges, she will become a vital part of hive life.  This may include feeding and cleaning larva, tending to the queen, building new comb, capping cells of brood–honey or pollen, heating or cooling the hive or other duties as necessary.  Afterwards she will become a field worker, gathering pollen, nectar or water. 

The queen develops from a fertilized egg after 3 days to a larva at about day 4.5, then develops into a pupa at day 7.5 becomes capped, then emerges at day 16. The worker develops from a fertilized egg after 3 days, to a larva at about day 5, then develops into a pupa at day 9 becomes capped, then emerges at day 21. The drone hatches from an egg on day 3, develops into a larva on day 5, becomes capped at day 10 then emerges at day 24.

The lifespan of a queen is 2-5 years, a worker 15-38 days in the summer and 140-320 days in the winter, while the drone lives a mere 4-8 weeks…

The queen lays all her eggs in hexagonal beeswax cells built by workers. Developing young honey bees (called “brood”) go through four stages: the egg, the larva (plural “larvae”), the inactive pupa (plural “pupae”) and the young adult

Newly emerged workers begin working almost immediately. As they age, workers do the following tasks in this sequence: clean cells, circulate air with their wings, feed larvae, practice flying, receive pollen and nectar from foragers, guard hive entrance and forage. The castes have different development times .


Development time of honey bee.

Days after Laying Egg









Cell capped




Becomes a pupa




Becomes an adult




Emerges from cell




Laying, foraging / flying

42 +- 7

28 +- 5

38 +- 7


Unlike colonies of social wasps and bumble bees, honey bee colonies live year after year. Therefore, most activity in a bee colony is aimed at surviving the next winter.

During winter, bees cluster in a tight ball. In January, the queen starts laying eggs in the center of the nest. Because stored honey and pollen are used to feed these larvae, colony stores may fall dangerously low in late winter when brood production has started but plants are not yet producing nectar or pollen. When spring “nectar flows” begin, bee populations grow rapidly. By April and May, many colonies are crowded with bees, and these congested colonies may split and form new colonies by a process called “swarming.” A crowded colony rears several daughter queens, then the original mother queen flies away from the colony, accompanied by up to 60 percent of the workers. These bees cluster on some object such as a tree branch while scout bees search for a more permanent nest site – usually a hollow tree or wall void. Within 24 hours the swarm relocates to the new nest. One of the daughter queens that was left behind inherits the original colony. After the swarming season, bees concentrate on storing honey and pollen for winter. By late summer, a colony has a core of brood below insulating layers of honey, pollen and a honey-pollen mix. In autumn, bees concentrate in the lower half of their nest, and during winter they move upward slowly to eat the honey and pollen.


Chapter 4 


Main Structures

The bee has 3 main external structures.  The head, thorax and the abdomen.  Located on the head are five sets of eyes, the antennae and feeding structures.  On the thorax or middle section of the bee are the muscles that control the wings, the 3 pair of legs and the respiratory system.  The abdomen is the longest part of the bee and contains the wax secreting glands, the sting, and ovaries (queen only).  There are numerous other parts which will be covered later.


The Head: Bee vision: 5 sets of eyes– three simple (ocelli) and two compound.  The compound eyes are composed of many light sensitive cells called ommatidiaThis is how bees perceive color, light, and directional information. The feeding structures of the bee include the tongue (proboscis), and the jaw or mandible. The tongue is used for lapping or sucking fluids such as nectar, honey or water.  The jaws are used for shaping beeswax, manipulating pollen and glandular secretions and moving objects.


Thorax: The thorax have the muscles which control the legs and wings.  On the legs have special pollen collecting structures or hairs which are used for grooming  also.  Here on the abdomen is located the spiracles. These are the respiratory system for the bee–this is the site of tracheal mites.  The thorax also has an armor plating to keep the bee from drying out just like on the abdomen.


Abdomen: The abdomen is the longest section of the bee and  has armor plating called tergites (top) and sternites (bottom) that protect the bee and keep it from drying out.  The wax secreting glands are located on the underside of the abdomen and a scent gland located just above the sting.  The hind legs have pollen baskets in which to carry the fresh pollen back to the hive for use to feed young bees.  This section also contains the sting.  This is a barbed object which penetrates the skin and continues to pump in venom into the victim until it is scraped off.  Honey bees can only sting once, since it ultimately causes their death–unlike the yellow jacket or hornet, which may sting several times.  The sting of a bee also releases an alarm odor readily picked up by other bees–so in order to reduce the number of stings–remove the sting as quickly as possible and smoke the area to cover the odor.


Chapter 5


Bee Nutrients

Pollen: Pollen is stored in broodcomb cells and is the main supply of protein and vitamins for the hive. Pollen is 6 to 28% protein by weight and usually contains the 10 amino acids essential for bees.

Nectar: Nectar is from 5 to 80% sugar but is less than 0.2% in protein, so nectar is the carbohydrate supply for the hive. Nectar is placed in honeycomb cells and the bees tending the honeycomb evaporate the water from the nectar by rapid wing movement to create ventilation. When the amount of water remaining in the nectar is less than 18%, the mixture is called honey and the bees cap off the cells. A mixture of honey and pollen is called “bee bread” and is the food for most larvae and bees. When a worker egg has been selected to become a queen, it is moved to a much larger queen cell and is fed large quantities of “royal jelly” which is similar to bee bread but contains more mandibular gland secretions and more honey (34% vs 12%). The larger cell for growth, larger food supply, additional carbohydrate, and more worker secretions results in the development of a queen.

Chapter 6


Not all beekeepers use all of these components.  Many variations are dependant upon individual beekeeping style, purpose, environmental conditions, etc… 

Bee veils: Purpose:  To protect the head from bee stings.   Bees are defensive insects and will seek out anything that disturbs the hive.  They are attracted especially to the eyes and nose.  They also become entangled in one’s hair.  For the beginner, it is not a comfortable feeling to have a bee crawling around in one’s hair.  Choices include square, round, and jackets with attached veils.  Prices vary.  If you can afford the expense, we would recommend a complete suit with attached bee veil.  This type of suit will provide the maximum of protection from stings.  However, a standard veil is all most beekeeper have.

Gloves:   They protect the hands from stings.  Some people just beginning may select the least expensive glove — a canvas glove.  But, bees will sting through light canvas gloves.  They will provide some protection but not enough.   You money will be better spent on a good pair of gloves that have sleeves sewn on them to keep bees from crawling up you arms.  Gloves will come in a variety of sizes from children size to large adult.

Protective clothing:  Bee catalogs will offer a variety of bee suits — with and without veils.  A good loose fitting shirt that can be zipped or buttoned up tight will be a good alternative.  Avoid dark colors.  Bees see dark colors as attractive and will be more likely to pay attention to you.  For pants a new beekeeper should find something light in color – tan or white.  Wear white socks.  Pant legs can be folded over at the ankle and the tops of the sock pulled up to hold the pant legs in place.  It also prevents bees from crawling up ones pant leg.  “If you want to see something really funny, it is the dance of a beekeeper with a bee that has made it to the beekeepers crotch.”  You definately want to avoid that same dance.

Shoes:   Many beekeepers have high top worker boots to wear when working bees.  It is not required.  If one places the pant legs in the socks, the beekeeper should not experience any trouble unless they make the mistake of wearing navy or black socks.  Bees will get on the socks and sting through them.  Heavy athletic socks work just fine.

As a new beekeeper, it is like going to war.  You want to avoid a sting.  However, sooner or later, you will have to deal with a sting or more than one sting. If you do face a situation in which you receive a sting or two, remember you can back away from a hive and wait for the bees to settle down.  They will.  A little ice applied to the sting will relive some of the pain.  If attacked by bees your best defense is to run.  Remember, a beekeeper does not have to put up with aggressive bees.  You do not need to wait for us to tell you why.  Here is the answer:
All  worker bees in a hive are produced by a queen.  They will display the characteristics of the genetic pool the queen represents.  To change the character of a hive all one has to do is replace the old queen with a queen known for gentleness.   

Hardware Accessories


A smoker is one of the most valuable pieces of equipment you can own. Its purpose: Subdue and move the bees. Think of it this way–What do you do if someone blows smoke into your face? Bees do the same thing, they turn around and move away from the smoke. It is important to learn that you can over smoke bees.  A smoker is designed to produce a cloud of smoke and smoke can be directed in the direction the smoker is pointed. All it takes is a puff or two.  You may be asking yourself right now “what do I use as fuel?”  There are so many fuels for smokers and everyone seems to have a favorite. My choice is pine shavings, with green grass on top. It produces a cool white smoke that is actually pleasant, but still gets the job done.

A hive tool:  The purpose of a hive tool is to allow you to pry boxes apart and assist in freeing frames to be removed from the hive. This is a handy item for scraping and removing burr comb. Hive tools come in many sizes and shapes. You just have to decide which is best for you.

A bee brush:    Purpose:  To brush bees off comb when removing honey.  When you have only two or three hives, it serves its purpose quite well. However, to use it, you must pull frames out of boxes and brush bees off.  They don’t like that. There are other ways to get bees out of the honey supers besides brushing them off.  Check out escape boards and chemicals such as Bee Go or Honey Robber.

A wheel barrow:  The other piece of equipment that comes in handy is a wheel barrow for carrying bee equipment from your garage to your bees.  It sure saves the back.

We have given you the basics about start up except bee equipment and the bees themselves.  That comes next.

Bee Woodenware/Equipment

Most wooden bee equipment is build from white pine.  Cypress is known for its long life but pine is an excellent choice.  A beekeeper needs to paint all equipment so that it is protected from the weather. A complete standard hive that includes: 1 deep hive body with frames and foundation,  1  medium hive body called a honey super and frames with foundation, a telescoping cover with metal cover, a bottom board, inner cover and a set of instructions.  Almost every bee supply business offers a standard hive either as a single or as two hive bodies.  Lets take a look at the various pieces discussed above:

First the box called a brood chamber: Most beekeepers will need at least two of these for a single hive.  Most kits sold will include only one.  The problem with one brood box is this — The bees will become crowded and swarm out the first year.  Bee boxes measure 9 5/8 inches high  by 16 1/4 inches wide and 20 inches long.  If you are starting a single hive, don’t make the mistake of buying only one deep box.  Bees need approximately 60 to 90 pounds of honey to survive a winter.  One deep box will hold about 60-70 pounds of honey if completely filled.

Bees need boxes to put honey in which can be removed from the hive and used by the beekeeper.  These are called honey supers.

Honey supers come in two sizes called shallow and mediums.  In making a decision to keep bees, it is best to select honey supers of one size only rather than mixing them.   The beekeeper will have only one size of honey frame to deal with.  The frames of a medium honey super are too deep to fit into a shallow super and shallow frames will fit into a medium honey super but the bees will fill the space below the frames with burr comb.  Burr comb has to be pried loose and if it contains honey, will create a sticky mess.

Another choice for honey storage for human use is the Ross Round Comb honey super. If you want honey in the comb this is an attractive choice.  It requires no extraction  (removal of liquid honey from the comb) as the above honey super would require. It can be packaged easily.  Honey comb foundation is placed into round section rings in a special frame which is then drawn out by the bees and filled with honey.   This is a great choice for the hobby beekeeper.

Standard accessories are required for a complete hive.  The deep brood box we will now start calling a brood chamber must have something to sit on. It sits on something called a bottom board.  A bottom board is a little bit longer than a brood box.  The extension to the front of the bottom board is the landing area for the bees just about to enter the hive.   The bottom board is the first piece of equipment to rot out.  To give it a longer life, the beekeeper should set the bottom board up above the ground.  Many use concrete blocks.  The important thing is to keep it as dry as you can.

Along with the bottom is a device to reduce the entrance to a hive.    These are used to help weak hives defend themselves from other bees and it is used in the fall of the year to keep rodents of the hive.  Rodents seek a dry place to build a nest and stay comfortable.  Bee hives are a good place to build a nest during the fall and winter. I recommend the adjustable Miller Entrance Reducer which is offered by Buckeye Bee.  Another accessory you will need is called an inner cover.  The inner cover prevents bees from gluing down the top cover to the top of the box.   If an inner cover was not used the beekeeper would have to pry the top cover from the hive.  This could cause damage to the top cover and of course, the effort to get the top cover off would alert the bees to your presence big time.

A top cover will round out the complete home for the bees.  There are several designs for top covers, but the preferred on is called a telescoping cover.  A telescoping cover usually is covered with a galvanized or aluminum metal sheet which is pressed to fit the wood parts of the cover.   Telescoping covers are also available in plastic. I personally do not like them, simply because they do not allow moisture to escape. Some beekeepers add a heavy rock on top of the top cover to keep the wind from blowing covers off. I thoroughly recommend a ventilated hive attic. They reduce the moisture hazard in the winter, allow cross flow ventilation, increase ventilation for curing nectar into honey and allow extra heat to escape during those hot summer months.

An elective accessory for the beekeeper is something called a queen excluder.Choose of either an all metal excluder or one bound with a wood frame.  We like the all metal excluder for several reasons:  1) they take less storage space and 2) they last longer.  The wood frames after several years of prying seem to break and need repair.  However, wood frames are preferred by some beekeepers.  You will have to make a choice.  One other word here:  You do not absolutely need a queen excluder on your hive unless you are producing comb honey.  A queen excluders keeps the queen below the honey supers and in the brood chamber.  When a queen lays eggs in comb and raises brood, the comb will turn dark and be unfit to eat.  

Painting hives–  Bee hives do not need to be painted.  The bees really don’t care.  However, saying that, if you want your investment in equipment to last, you will paint to protect the wood.  Most people like to paint hives white.  The only problem with white is that white is easy to see against a dark background such as green shrubbery.  If you have more than one hive, you can paint the entrance (the landing board) a different color from its neighbor.  Bees have a tendency to drift into a hive that is not their own and this is true of hives in a straight row.


You will need to get bees for your bee equipment.  You may sit the beehive out as a yard decoration.  I am sure it will get plenty of attention.  However, without bees, you are not going to be a beekeeper.

Where do you get bees?

What should you be looking for:

1)   The easiest way to begin beekeeping is to purchase the equipment that we just talked about and buying bees to go into the equipment. Everything can be scheduled so that you can be assured that your beginning will really result in a beginning.  You still must deal with reliable vendors and dealers

2)  You could buy a nuc (nuclei) hive.  This is a box with four or five frames of bees, a queen, brood, honey and pollen stores.   It needs to be transferred to a full deep hive body.  However, it doesn’t have to be transferred today.  It could wait several days.   The nuc should be set out on the location where the full size hive will be placed.

3)  You could purchase a full hive of bees.  These are usually available and listed in the bee magazines.  You might run across a beekeeper willing to sell hives in your own community.

4)  You could purchase a swarm or catch a swarm yourself.  At one time it was very common to find a swarm and then prepare a box to put them in.  Many people in years past started beekeeping in exactly that way.


Chapter 7

Location of the Hive.

Locating hives is a major concern for beekeepers living in cities.  It is less critical in rural areas.   You should observe several rules when you locate your hives.  Use common sense.

1.      Do not set the hive of bees on the property line facing the neighbors property.

2.      Make sure a source of water is near-by.  Not your neighbors hot tub.

3.      Place your hives in an area of the yard where they will not be obvious to anyone passing by.

4.      A hive needs sunlight tempered with shade.  A.I. Root placed his hives under grape vines.  Other place the hives in the foundation planting and paint the hives green.

5.      Most bee literature recommends placing the front entrance in a southern direction but this is not absolutely necessary.  Bees do go to work earlier with the early morning sun shinning on the front of the hive.

6.      Share honey with your neighbors and work with them on any problems they have with your bees.

7.      Fences make good neighbors and you may want to build one if your community allows it.  The fence will force the bees to fly up and away from areas where people walk.  The flight path of the bees should not be over a side-walk where the public frequently travels.  A barrier of trees will serve the same purpose.

8.      Don’t locate the hives in a field or close to a field with live stock such as cows and horses.  You might be held responsible for the death of an animal if your bees attack.  It has happened.

9.      Don’t locate a hive of bees in a flood plain.   Even if someone says that this creek has never overflowed its banks.

10.  Finally, don’t place hives in an area where bee droppings are going to cause a problem.  Examples include a neighbor who hangs clothes out on a clothes line.   Another is an automobile dealership with a lot full of cars. Bees do have to relieve themselves and do so when they leave the hive much as birds do flying overhead–Only you have thousands of bees going over the same area.

Bee hives have a fascination for adults and young people.  It is common to hear beekeepers yelling at the neighbor kids for throwing rocks at the hives.  It is not uncommon to find a hive that someone used for target practice (in the country).  Give some thought to this subject.  It may seem so simple, but a few beekeepers have ended up in court and have been found negligent in management of their hives.   Just use your common sense.  Do what a prudent person would do.

You might also want to talk to your insurance agent concerning your hobby of keeping bees on your property.  If you run into a problem–will your insurance company cover you?…

Okay, lets take a look at arranging your hives.  Hives should be placed three or more feet apart.  It is possible to over populate a location with too many bee hives.  No city bee yard should have more than four hives on less than one acre of land.   An acre is 200 feet by 200 feet.  Many city lots are much smaller than an acre.   Hives that are too close to each other do not allow the beekeeper much room to manipulate a hive.  This goes for a fence, side of the house, or shrubs.  One needs room to walk completely around the hive without having to squeeze between the hive and some object.   The beekeeper also may bump a hive too close to the one being worked and cause the bees in the bumped hive to become agitated and ready for the beekeeper when he turns his/her attention to it.


Chapter 8


The goals of spring management of honeybee colonies in a commercial honey producing operation are clearly defined. They are principally:

1. To maximize total honey production while controlling expenses and risk so as to achieve maximum profit (vs. attempting to maximize yield per hive)

2. To maintain or increase numbers of colonies without sacrificing total honey production

3. To ensure good wintering success after a successful honey season.

4. To operate in a fashion that allows ample time for each operation and permits taking time for rest and relaxation.

The following priorities must be considered in achieving these major goals: Bee colonies must reach maximum strength in time for the anticipated main honey flow. 

The following resources must be used effectively: management,  labor, time, vehicles and fuel, honey or syrup and pollen & supplements,  bees and queens, hives and equipment.

Risk of loss must be minimized. Missing a honey flow can occur because of the following factors: small bee populations, chilling of brood, inadequate supering, poor locations, swarming, disease or parasites, accidents and an inability to manage a schedule.

The procedure at this time of year is to work through yards, reversing hives , scraping, feeding, medicating, and removing brood and feed from hives as your experience deems appropriate.

Management is the key to successful beekeeping. Spring is an ideal time for beekeepers to check colonies for honey and pollen reserves, to clean equipment, practice swarm prevention and establish new colonies.

Check colonies for honey and pollen reserves. Briefly check honey reserves in late winter-early spring; temperatures can be 40° 50° F. and sunny.  Honey should be on both sides of the cluster with at least a 10-20 pound reserve or 2-3 well filled combs.  If feeding is necessary, it can be done by: a. exchange of honey combs from another colony (only if disease free) b. sugar syrup poured directly into combs 1:1 ratio c. sugar syrup poured in division board feeders, hive top feeders or feeder pails d. feeding dry sugar on the inner cover.

 Some areas may need pollen substitute and supplement feeding more than in other areas. Pollen substitute can be purchased from bee supply dealers. A thorough colony examination should be conducted when temperatures reach 60-65°.F.  Then the brood and queen can be checked more extensively. However, colonies can be examined in temperatures below 60°  if done quickly so that the brood is not chilled. (Recognize disease symptoms.)

Replacing and cleaning up equipment. If colonies are packed, they should be unpacked.  Equipment (bottom boards, top covers, hive bodies) should be repaired and painted if needed.  Remove old combs, especially from lowest hive body, before being refilled with brood and honey. Replace with foundation or drawn comb, free of drone cells.

Swarm prevention should be a concern to the beekeeper once the colonies have survived the winter and bee populations start increasing. 

Establish new colonies. Package bees should be ordered in January if possible, so that arrival will be during early fruit and dandelion bloom. If introducing bees to drawn comb, a two pound package with queen can be purchased. When using all foundation, a three pound pack is better. Feeding sugar syrup is especially important for bees introduced to foundation. Dividing colonies provides new colonies to replace losses or to make increases. It is also a means to control swarming. One method is to divide the bees, brood and honey in equal parts, then give the queenless colony a queen.

Colony inspection for any disease symptoms or mites. Examine brood for American foulbrood.  Examine adult bees, brood and possibly conduct an ether roll test for Varroa mites.  Take an adult bee sample for Tracheal mite examination.

Spring Activities

Spring management and activities are interrelated, and include: unwrapping, site evaluation, splitting, disease detection and control, routine or special medication, mite treatments and surveys, scraping (and replacing if required) of floors and hive equipment, moving yards, feeding, medicating, removing excess feed, eliminating poor colonies, requeening and adding or reducing space as required.

A number of these activities often take place on a single visit to the yard. Sometimes a specialized team with unique equipment might handle one task, while a separate team handles another task in the same yard, or somewhere else in the outfit. 

Chapter 9

Fall & Winter Management


During the fall and winter is very important because it is the starting point in providing strong colonies for the next year. The beekeeper should consider the following management practices:
 Requeening colonies in early fall if weak or recently queenless. Very weak colonies should be united with stronger colonies, by  using the newspaper method by placing a sheet of newspaper between the two colonies being united and puncture about six (6) small holes in the paper.
Check honey reserves. Each colony should have about 60 pounds (a deep super). Fall feeding of sugar syrup is provided in a 2 to 1 ratio (sugar to water). Syrup can be supplied to the bees inside of the hive by either a friction-top pail placed on top bars within an empty hive body. Punch 20-30 holes in syrup container with 3 penny nail or drill with 1/16 inch drill. Or a hive top or division board feeder container that replaces a comb in the brood nest.
Inspect colonies for any diseases before wintering. Mites can be controlled once honey is removed.
Reduce hive entrance to prevent field mice from entering.
Provide upward ventilation such as using a ventilated hive attic. This allows moisture to escape.
Remove queen excluders if used.
Provide wind protection for the winter. Shrubs, fences or trees can provide windbreaks. Colonies should be placed where cold air flows away (high ground) and the hives should receive sunshine (southern exposure).

This is not all that can be done–but that is up to your particular feelings on the subject.  The MOST important item here is to ensure ventilation and food.

Chapter 10

Honey is sold as “extracted” honey – bottled, liquid honey that has been extracted from the combs; “comb” honey -honey still in its natural comb; and “chunk” honey – a bottled combination of extracted and comb.

Honey extracting equipment for the hobbyist is specialized and represents abone-time investment of about $500-1200 for new equipment. Used equipment is often available at significant savings. These are the basic tools and procedures for extracting honey:

  1. Uncapping knife – A heated knife for slicing off the cappings from combs of honey.
  2. Uncapping tank – A container for receiving the cappings. Wet cappings fall onto a screen, and honey drips through to the bottom of the tank and out a spigot.
  3. Extractor – A drum containing a rotating wire basket. Uncapped combs are placed in the basket and the basket is turned by hand or by motor. Honey is flung out of the combs onto the sides of the tank and drains through a spigot.
  4. Strainer – A mesh of coarse screen or cloth directly under the extractor spigot. This filters out large debris such as wax and dead bees.
  5. Storage tank – A large tank with a spigot, or “honey gate,” at the bottom. As honey settles in the tank, air bubbles and small debris rise to the top and can be skimmed off, allowing honey that is bottled from the honey gate to be clear and attractive.

Sometimes extracted honey granulates. This is a natural process, and the honey is still perfectly edible. If bottled honey granulates, loosen the lid and place the jar in a pan of water on a stove. Heat and stir the honey until it re-liquifies.

Comb honey requires little specialized equipment, so it is a good way for a new beekeeper to get started. Supply companies offer special comb honey supers for producing comb honey in round or square one-pound sections. “Cut-comb” honey is the easiest and least expensive honey to produce. With cut-comb, the entire comb is cut away from the frame then further cut into smaller sections and packaged in special plastic boxes. Regardless of these variations, all comb honey requires special extra-thin foundation. Freeze comb honey overnight before it is sold to kill any wax moth eggs and larvae.

Chunk honey is made by placing a piece of cut comb honey in a jar and filling up the rest of the jar with extracted honey. Remember to freeze the comb honey first.

Wax cappings are a valuable by-product of extracting. After cappings have dripped dry, wash them in water to remove all honey. Melt the cappings, strain the wax through cheesecloth and pour it into bread pans or a similar mold. Supply companies can render your beeswax bricks into new foundation at considerable savings.

  Chapter 11


Many valuable crops benefit from insect pollination (the transfer of pollen from one flower to another flower). This process increases fruit yield and, often, the size of the fruit. Honey bees are important pollinators because they can be managed and easily moved to crop sites. In the United States, the added value to agriculture from honey bee pollination is over $9 billion annually, and many beekeepers earn extra income from renting colonies for pollination. In Georgia, bee hives are rented to pollinate apples, blueberries, cucumbers and watermelons. Professional recommendations vary for the number of hives needed for good pollination, but for these crops one colony per acre is commonly used.

Flowers which have evolved to attract honeybees have optimized their flowers to increase the chance of a bee visit. The bees unwittingly carry pollen from flower to flower, thus pollinating the plants and permitting them to reproduce. Plants most successful in attracting bees and getting them to make repeat visits will out-reproduce those which are less successful. Thus flowers must both attract and reward an insect visitor. The design of bee-pollinated flowers includes mechanism(s) to attract a bee to visit the flower. The flower is shaped differently from the display of the leaves. The flower is usually a different color than leaves so that the flower is visible on the background of leaves. In general the coloration is designed so that the bee learns to distinguish it and associate a visit to that pattern with the reward. Flowers have evolved bull’s-eye and nectar guide patterns in their floral displays to attract a passing bee into landing. Some flowers also attract insect visitors with fragrances. Bees have an excellent sense of smell with chemoreceptors in their antennae and are attracted to particular fragrances. The combination of visual and olfactory attractants gets the bee to land most frequently. In the absence of attractants, a bee is unlikely to observe the flower and make a landing even if there is a reward waiting for her! Understanding the relationship between bee and plant also help humans. All fruit and seed crops must be pollinated for our food and oil. Indeed, for tree fruits, bee hives are transported from orchard to orchard with trees in flower to improve the pollination of the fruit trees, but also to increase honey production. We also need bees to pollinate clover (animal forage), cotton (oil and fiber) and sunflowers (oil). Most of our “vegetables” are really fruits (tomatoes, peppers, beans, peas, corn, squash, cucumbers, etc.) and most of these need pollination by bees.




Anyone who keeps bees will inevitably get stung. Consider this before you invest in a beekeeping hobby. You can greatly reduce stinging if you use gentle, commercially reared queens, wear a veil, use a smoker and handle bees gently. Experienced beekeepers can handle thousands or even millions of bees daily and receive very few stings.

Generally once she inserts her sting, the bee pulls herself away, leaving the venom pouch and sting in the invader; the worker soon dies because of the abdominal rupture. Thus stinging for honeybees is an act of self-sacrifice. Unlike many other hymenopterans, honeybees are not likely to sting unless provoked.

A bee sting will cause intense local pain, reddening and swelling. This is a normal reaction and does not, in itself, indicate a serious allergic response. With time, many beekeepers no longer redden or swell when they are stung (however, it still hurts!). An extremely small fraction of the human population is genuinely allergic to bee stings. These individuals experience breathing difficulty, unconsciousness or even death if they are stung and should carry with them an emergency kit of injectable epinephrine, available by prescription from a physician. When a bee stings, the stinger and poison sack remain in the skin of the victim. Always scrape the stinger and poison sack out of the skin with your fingernail or a hive tool never pull it out because this squeezes the remaining venom into the skin.


Chapter 13

Honey Bee Diseases and Pests

Honey bee brood and adults are attacked by bacteria, viruses, protozoans, fungi and exotic parasitic mites. Additionally, bee equipment is attacked by other insects. Disease and pest control requires constant vigilance by the beekeeper. See your county Extension agent for help in registering and inspecting your hives.

American foulbrood (AFB) is a bacterial disease of larvae and pupae. The bacteria form highly persistent spores that can be spread by adult bees and contaminated equipment. Infected larvae change color from a healthy pearly white to dark brown and die after they are capped. Cappings of dead brood sink inward and often are perforated. Check for AFB by thrusting a small stick or toothpick into the dead brood, mixing it then withdrawing the mass. Brood killed by AFB will be stringy and rope out about inch. Colonies with AFB should be treated with Terramycin and your county inspector notified. To prevent AFB, feed colonies the antibiotic Terramycin® according to label instructions in early spring and fall. Allow at least four weeks from the last Terramycin® treatment until the first nectar flow.

European foulbrood (EFB) is a bacterial disease of larvae. Unlike with AFB, larvae infected with EFB die before they are capped. Infected larvae are twisted in the bottoms of their cells, change to a creamy color and have a smooth “melted” appearance. Because EFB bacteria do not form persistent spores, this disease is not as dangerous as AFB. Colonies with EFB will sometimes recover on their own after a good nectar flow begins. To prevent EFB, treat colonies with Terramycin® as described above.

Chalkbrood is a fungal disease of larvae. Infected larvae turn a chalky white color, become hard then turn black. Chalkbrood is most frequent during damp conditions in early spring. Colonies usually recover on their own.

Nosema is a widespread protozoan disease of adult bees and is especially common in north Georgia. In spring, infected colonies build up very slowly or not at all. Bees appear weak and may crawl around the front of the hive. Discourage nosema by selecting hive sites with good air flow. Damp, cold conditions seem to encourage this disease. Treat nosema by feeding the drug Fumidil® B in sugar syrup in spring and fall. Do not feed the medication immediately before or during a nectar flow.

Wax moths are a notorious pest of beekeeping equipment. Adult moths lay eggs near wax combs, then their larvae hatch and begin burrowing through the combs to eat debris in the cells. Moth larvae ruin combs and plaster them with webbing and feces. Honey bees are usually very good at protecting their colonies from moth larvae. If moth damage is found in a colony, there was some other problem (usually queen loss) that weakened the colony first. Moth damage is most common in stored supers of comb. Protect stored supers by stacking them no higher than five hive bodies. Tape shut all cracks, put paradichlorobenzene crystals at the top of the stack and cover the stack with a lid. Replenish the crystals as they evaporate.

Tracheal mites were first detected in Georgia in 1986 and have since caused high colony death rates throughout the state. The microscopic mites enter the tracheae (breathing tubes) of young bees. Inside the tracheae, mites block air exchange and pierce the walls of the tubes to suck blood. Symptoms resemble those of nosema. Bees become weak, crawl at the hive entrance and sometimes uncouple their wings so that all four wings are visible. Colony death rates are highest during winter and early spring. If you suspect tracheal mites, see your county Extension agent for help in diagnosing the disease. Infested colonies are treated with Mite-a-thol® or special formulations of menthol.

Varroa mites were first found in Georgia in 1989. These mites are about the size of a pin head and are copper in color. Female mites cling to adult bees and suck their blood. Females then enter a bee brood cell and produce several offspring which, in turn, suck the blood of the developing bee. Infested colonies almost always die within three to four years unless they are treated. Colonies are treated with Apistan®, a formulation of fluvalinate. Because tracheal mites and Varroa mites are newcomers to the United States, control technology is rapidly changingand has not been well worked out. See your county Extension agent for the latest information on mite control.



Dadant & Sons, Inc., 1992, First lessons in beekeeping, Hamilton, Illinois.

The A.I. Root Co., 1990, ABC & XYZ of bee culture, 40th Edition, Medina, Ohio.

Delaplane, K.S., 1993, Honey bees & beekeeping: A year in the life of an apiary, The University of Georgia, Georgia Center for Continuing Education, Athens, Georgia.

Dadant & Sons, Inc., 1992, The hive and the honey bee, Hamilton, Illinois.

Morse, R.A. & T. Hooper (eds.), 1985, The illustrated encyclopedia of beekeeping, E. P. Dutton, Inc., New York, New York.

Seeley, T.D., 1985, Honeybee ecology, Princeton University Press, Princeton, New Jersey.

Beekeeping in the Midwest, REV ED. 1976 E.R. Jaycox

The Beekeeper’s Handbook ,Third ED. 1998 D. Sammataro, A. Avitabile

Winston, M.L., 1987, The biology of the honey bee, Harvard University Press, Cambridge, Massachusetts.

Stahlman, Dana, Personal quotes and assorted works.